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Abstract—The free-interaction influence of thermal expansion process in the boundary layer gas flow is
analysed in this paper, using the formalism of the Triple-Deck theory. The physical model considered
herein is the forced convection of a gas flowing over a flat plate subject to a step change in the surface
temperature, taking place at a certain distance from the leading edge. There is a fundamental parameter
T.. defined as the ratio of the wall temperature to the free stream temperature. For values of T, close to
one, the governing equations can be linearized and solved with the aid of the Fourier transform method.
However, for values of this parameter not close to one, a numerical treatment is required to solve the
governing equations. Using finite-difference methods, the numerical results for the pressure, skin friction,
thickness displacement and Nusselt number are presented for different values of T,. Finally, for a critical
value of this temperature ratio, the boundary layer separates.

INTRODUCTION

SiNcE the classic works by Stewartson and Williams
[1], Messiter [2] and Stewartson [3] for the study of
the influence on the drag coefficient of a finite length
flat plate, using a three layer structure, there has been
a renewed interest in applying it to a host of other
basic flow situations, involving normally small dis-
turbances of different nature. In particular, the pres-
ence of some disturbances on the plate surface, gen-
erates an interaction with the outer inviscid flow,
producing longitudinal pressure gradients having an
important influence on the fluid close to the wall where
the convective terms are small. It has been dem-
onstrated that the Triple-Deck structure can be util-
ized to explain correctly those flows and to predict
boundary layer separation. A comprehensive review
on this subject is given by Smith [4], where the same
structural argument of the Triple-Deck theory can
be applied immediately to a wide variety of other
incompressible and compressible problems. Particular
studies of the incompressible case come from
Stewartson [5] for a corner, the extensively studied
case for a hump or dent mainly analysed by Smith and
Merkin [6], Veldman and Dijkstra [7], the slot-injec-
tion by Napolitano and Messick [8]. The compressible
Triple-Deck structure has also received considerable
attention in the literature for subsonic and supersonic
flows [1, 9]. However, the majority of these works
consider the disturbance associated with some kind of
dynamical or geometrical discontinuity like the vel-
ocity value as boundary condition or the finite hump

on a flat plate and similar effects. On the other hand,
Messiter and Lifian [10] study the problem of the
vertical plate in a laminar free convection flow. In
particular, their analyses consider the flow near a dis-
continuity in plate temperature and show that a free
convection interaction of the same general type occurs
near a jump discontinuity in the prescribed plate tem-
perature. This analysis can be simplified considerably
because the boundary conditions for the velocity are
continuous and an analytical solution for the local
pressure distribution can be obtained. Recently, Zey-
tounian {11] has proposed to study the incompressible
flow in a flat plate subject to a step temperature, in a
finite interval of the length of the plate.

In the present work, the focus is on investigating
the fluid-mechanical structure of a gaseous boundary
layer flow produced by the thermal expansion process
using the Triple-Deck theory. This process is gen-
erated by abruptly increasing at a given distance the
plate temperature from that of the free stream to a
higher value. This problem has been studied ana-
Iytically and numerically by solving the multi-layer
governing equations, obtaining a boundary layer sep-
aration for a critical value of the temperature ratio.

GOVERNING EQUATIONS

The physical model analysed is the following. We
consider a flat plate aligned parallel to a uniform
free-stream gas flow which has a uniform free-stream
velocity u¥ and temperature T%. We will assume that
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NOMENCLATURE

A(%) nondimensional displacement thickness v* velocity at the y direction

A{X) Airy function I nondimensional velocity at the y

A4(%) nondimensional linear displacement direction, p*/u*
thickness v nondimensional lower-deck velocity at

B{(w) complex constant the y direction

B constant of relaxation to nondimensional linear transversal

C;  matrix related with the interaction law velocity

¢ specific heat of the gas V change of variable to follow the

Fy nondimensional strecam function Box—Keller method, equation (64)

G,  nondimensional temperature x* longitudinal coordinate measured from
distribution the leading edge, Fig. |

H(%) Heaviside step function X nondimensional longitudinal coordinate,

i imaginary number x*/[*

Im w imaginary part of @ X longitudinal scale within the lower-

k thermal conductivity deck, equation (7)

K constant depending of Prandtl number, Xo initial value for £ to complete the
9VYALE2/3)T(1/3)Pr''? numerical calculations

* longitudinal distance between the leading P transversal coordinate measured from the
edge and the temperature step leading cdge, Fig. !

Nug Nusselt number based on the Lighthill ¥ nondimensional transversal coordinate,
approximation y¥/r*

Nu  Nusselt number, defined by Nu = ¥ transversal scale within the lower-
— O, (144 ¥RHNT,— DA YR E deck, equation (7)
xCTIOF| +— o o initial value for § to complete the

Pr Prandtl number, u¥ ¢, /k numerical calculations

pE pressure far from the plate Pe edge value of the § scale

p* pressure distribution 4 transversal coordinate of the boundary

P nondimensional pressure, p* —p% /pXu2 layer. y = R¥*Y

Bo nondimensional linear pressure z modified longitudinal coordinate,

il nondimensional pressure at the o =3
lower-deck

R Reynolds number, u* /*/v¥

R*  ideal gas constant Greek symbols

R; vector related with the interaction law I Dirac delta function

T*  temperature far from the plate " non-similar variable, equation (15}

TF  wall temperature 0 nondimensional temperature

T*  temperature distribution a, temperature parameter defined by

T, nondimensional temperature parameter, T,—1
T T* u¥  viscosity at the free stream of the gas

T nondimensional temperature, T*/T% u* viscosity coefficient

T, nondimensional linear temperature up to T nondimensional viscosity coefficient,
terms of order 0, Wk

T, nondimensional linear temperature up to v kinematic viscosity at the free stream of
terms of order 0 the gas, uX /p%

T change of variable to follow the E(Pr) constant depending on Prandt]l number,
Box—Keller method, equation (66) equation (21)

ur velocity at the x direction far from p¥ density function at the free stream of the
the plate gas

u* velocity distribution at the x direction p* density of the gas

u nondimensional velocity at the x Do wall density
direction, u*/u* a stretching variable on the linear analysis,

i nondimensional lower-deck velocity at 7= afPr'?
the x direction T nondimensional skin friction

7 nondimensional linear longitudinal To nondimensional linear skin friction
velocity ¢ high order function to determine T

U change of variable to follow the Vo nonsimilar stream function defined by

Box-Keller method, equation (63)

equation (15)
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1/ nonsimilar stream function defined by
equation (63)
) Fourier frequency.
Subscripts
B Blasius profile
e outer edge of the lower-deck
F Fourier variable
w value of the variables at the wall
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0 value of the variables at the free
stream.
Superscripts

bar to denote linear variables

bar to denote the lower-deck
compressible variables

bar to denote the lower-deck
incompressible variables

asterisk to denote the dimensional
physical variables.

the free-stream gas temperature is equal to the wall
temperature. However, at a certain distance from the
leading edge, the flat plate temperature is suddenly
changed to a uniform value T# greater than the gas
temperature. Thus, the heat transfer will always
occur from the flat plate to the gas, causing logically
an expansion process in the gas flow. The physical
situation is shown in Fig. 1. Specifically, the main
features of the flow can be modified substantially if
we analyse regions very close to the step temperature

upper and main decks permit simple analytical solu-
tions, we must concentrate herein on the problem of
the lower-deck. The starting point in order to arrive
at the lower-deck equations comes from considering
the compressible Navier-Stokes equations together
with an appropriate energy equation for two-dimen-
sional forced flow. The nondimensional governing
equations, assuming completely negligible Eckert
number (low Mach number flows), are given by

Apm) | 3pw) _

where the strong gas expansion causes the retention 0 )
. . . . ox oy
of the pressure gradients in the governing equations
due to the free interaction phenomena. The dis- Cu Ou op 1140 du
placement thickness evolution, for this region, P¥g, TF ey T T ox AL 2&
changes in an important way due to the very strong
expansion process. It is well known, that the Triple- 2V0u Ov 0 |odu v 5
Deck structure can be described by three layers T3 lox + dy + ay‘u dy + ox @
(upper, main and lower deck) each of them satisfying
appropriated governing equations [4]. In this case the o v + pv@ — op + 1o ul2 ou
lower-deck is the only nonisothermal layer, which 0x Oy dy R |0y Oy
is produced by the altered boundary conditions at
the flat plate, due to the drastic change in the wall _ 2 {a“ @ :l + i# l:% + 6”}} (3)
temperature. Because the equations of motion for the 3(ox oy ox" [ oy ox
y*
T
R-GIB
R~3l!
R /
R-Sll
T: . *
Tw X__)

FIG. 1. Sketch of the thermal expansion interaction process.
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The nondimensional variables and the correspond-
ing symbols used in this work are given in the
Nomenclature. In addition to the above equations,
we need an equation of state. In this case for simplicity
we take an ideal gas law given by p = pR*T. Similarly,
if we assume for simplicity that the gas viscosity
increases linearly with temperature (Chapman—
Rubesin parameter, C = 1), both relations are given
in nondimensional form as:

pT =1, pu=1. (5
In the above equation (5) the variation in pressure in
the state equation has been neglected, which is justified
for these low Mach number flows. The origin of
the two-dimensional Cartesian coordinate system is
taken to be at the leading edge of the flat plate where
x and y represent the longitudinal and transversal
coordinates to the plate, respectively. Also, in the
above equations, Pr and R represent the Prandtl and
Reynoids numbers defined by Pr= p%C,/k and
R = u* I*/v¥, respectively. We also assume that the
Prandtl number is constant. The boundary conditions
required to complete the problem statement are speci-
fied by the following relationships:

aty=0: u=v=0 T=1 for x<1 (6a)
T=T, for x>1 (6b)
atx=0; y>0: u=T=1. (6¢)

Finally, far away from the flat plate, we have

u—-» 1, T—1. {6d)
Clearly, for fixed values of R and Pr, the analytical
model depends only on a parameter 7, which is given
by the ratio of the wall temperature to the free stream
temperature, T, = T¥/T* and the specified values
of it dictates the procedure to solve the governing
equations.

Lower-deck equations

Inorder to consider those regions where the thermal
expansion becomes considerable it is required to intro-
duce the adequate Triple-Deck structure scaling. It
can be shown [4] that in regions close to the point
where the step change in temperature takes place, the
value of the pressure in higher order equations can
take an irregular form. So, when this point is
approached, the induced pressure gradient eventually
becomes comparable with the leading order inertial
terms when x—~1 = 0(R~¥®). Therefore, in order to
analyse the effects in the lower-deck caused by a ther-
mal expansion at the field flow, the following new
expansions and scaling are introduced :
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u=]"*RVEGL
r= ¥R Yy
p= JUIR !:4[3+ C.
x—1=4 "R ¥g y=21YR"F (D

where 2 = 0.332. In this form, the above governing
equations can be reduced to

0l J
Epu*{* g‘f;pl‘r =0 8)
oa i op o ai ©
74 - — § 1) R — —_—
P TP T e\ ey
op o
5)5—0(1? ) (10)
T, T 1o ( oT an
GOT e 1o oTy
PTG \M oy

The above compressible governing equations should
be completed with appropriate boundary conditions
for the lower-deck given by

ati=0: d=0=0, T=I1+(Ty,—DHE (1

where H(X) represents the Heaviside step function.
As ¥ - —o0, the solution must match with the
Blasius solution given by & — uy(Y), when Y is small.
Here, Y is the inner-variable normally used to analyse
the classical boundary layer and it is relatgd with »
through this relationship y = R™**Y oralso, in terms
of the transversal lower-deck variable as Y = R V%3,
Similarly, when ¥ - —co the temperature must tend
to that of the free stream, ie. T— 1 as £ —» —w,
In the region % — 0 of order (¥ ~ Re™**) there is
another thin region (not resolved by the Triple-Deck
structure) called by Stewartson ‘Central Region’ [3],
where the full Navier-Stokes equations are applicable.
The influence of the structure of this zone is not pri-
mordial and its presence is dictated by jump-con-
ditions in the Triple-Deck coordinates at x = 0. Then,
without considering longitudinal heat transfer mech-
anism (|X] » Re~**); T =1 for £ < 0. On the other
hand, for large values of §, the expansions (7) must
be matched with the main deck. However, we shall
not discuss here the details, to be found elsewhere [3].
The corresponding boundary conditions are given by:

’;7 - o0 {13

u~7+AX), for

where A(%) represents the displacement thickness with
sign changed and also the velocity slip at the base of
the main-deck, corresponding to the inviscid per-
turbation of the upstream Blasius solution by the
induced pressure gradient. In addition, a boundary
condition of the temperature is required to complete
this matching with the main-deck and is given by:

T~1, for §—-o0. (14

This is because in the main-deck pug 07T/0X =
O(R™'®), thus T(% Y)=/(Y). But similarly,
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when the function T'(%,7) is matched with the
upper-deck the only possibility is that 7= 1, which
is dictated by the imposed boundary condition at the
free-stream. Due to the elliptic nature of the problem,
an additional boundary condition is required for
values of ¥ — oo which matches with the modified
Blasius solution for a compressible boundary layer
heated by a step change in the temperature of the flat
plate. From the point of view of the classical boundary
layer theory, the neighborhood of the step change on
the flat plate, i.e. when x — 1 has been analysed by
different authors as Sparrow and Yu [12], Cebeci and
Bradshaw [13], Lighthill [14] and the analytical treat-
ment follows that of Goldstein’s analysis [15] of the
near-wake of the aligned flat plate. In these works it
is shown that continuation of the Blasius solution into
the wake is possible by introducing an irregularity
just downstream of the trailing edge. Furthermore,
provided separation does not occur at x—1 < 0, the
only singularity in the solution occurs at x = 1 and it
is due to the change in boundary conditions [3]. The
transition of the solution from x=1",tox=1%is
achieved by the Rott and Hakkinen [16] modification
of the Goldstein wake and in our case is given by

Y

nZF

[y Yo=(x=1)"Fo+ -

é
Tp ~ b(x—

oX

D7 T Y) = Gol+ o (19)
for x » 1 and x—1 » R~*® The velocity and tem-
perature fields in the neighborhood of the step region

satisfy to the lowest order, the following equations:

Fi+1FoFy—1F = b (16)

i
5-Go+3FG, =0 a7
Pr

where primes denote derivatives with respect to n. The
boundary conditions are then given by

aty=0: Fo=Fy=0, G,=T,

0.332

atn — oo F(,—>~—11 +;1J (Go—=Ddn+--

G,—~1. (18)

In the above equations b should be a positive quantity
which is evaluated numerically. Because it might be
expected that the pressure gradient in x—1 <0 is
disfavorable, dp/0x represents the so-called ‘vorticity-
induced’ pressure gradient [16].

It should be noted that if we use the approximation
F, ~ 0.3321%/2 for the energy equation (17), it can be
integrated and after some manipulations we obtain:

(0332Pr/9'/3 N
G, = Tw+o.7764(1—Tw)j e " du. (19)
1]

These solutions for F, and G, are required to initialize
the numerical problem of the lower-deck. In this sense
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and after some manipulations, it can be demonstrated
that the displacement thickness and the pressure are
given by the following expressions :

Alx) = =E(Pr)(T,—D(x-1'"?
—E(Pr)(T,—D(x—1)~%3

px) = (20)

for x » 1* and E(Pr) is a Prandtl’s function given by :

J J exp (—v*) dvdu
(pri9)

J exp (—v*) dv
0

E(Pr) = @1

Complementary, it can be shown that the cor-
responding expressions for the displacement thickness
and pressure for x — 1~ are given as

A) = 0((x—1)'")
XT,— 1 Z(Pr)
33 [Ca-DPT

The relationships given by equations (20) and (22) are
needed to complete the boundary conditions
upstream and downstream for the thermal expansion
process.

Finally, an interaction condition, which is derived
by the thin airfoil linearized theory is required in order
to match with the upper-deck solution and cor-
responds to the well-known pressure—displacement

relation [3}:
50 = 43(; A (~x,)~dx1

px) = 22

~7 (23)
where in the last equation prime means derivative with
respect to the dummy variable %, and the integral
represents the principal value of the Cauchy—Hilbert
integral. The set of equations define the thermal
expansion problem within the longitudinal scale
x—1 = A"%*R~¥*% However these equations can be
simplified even more by employing the Howarth-
Dorodnitzyn transformation [17] giving an equivalent
set of incompressible governing equations. Therefore,
defining the following nondimensional variables :
I L i+ T
=% y=[ pE N AP pa=pi §=pi+ Fr

4

we obtain the corresponding incompressible equa-
tions needed to solve the thermal expansion statement
and are given by :

on 0

ot o5 =" 25)

722 93— Ldp, 2 (o 26
CPra pds " ap\ap (26)
AT, T _ 1 for .
“ox V05 T Préoj\ap @7
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pT =1 pu=1 (28)

with the following boundary conditions

atv=0: g==0, T=1+(T,—DH(D
X—o—x: dg-p, Tol
o o0 aﬁw-“(fwj (T—-1)dj
0

oo pol, a-sx-DYFm, TG, 29
together with

. 1L A~(.f|)dr‘

= T o

where Fy. v, G, satisty the equations (16)—(18).

LINEARIZED THEORY FOR 7,1

Defining 0, as 0, = T, ~ 1 « 1, the equations can
be linearized around the undisturbed boundary layer
profile by expanding the flow variables as follows:

@=F40uio4 -, F=0,6,+

ﬁz()wﬁ()_q'_“‘n JZOWA:O_*_“'
P

=1-0,T,, pu=1+6,T+
T = 1+6WT0+03,T'1. T = I+wa{)+ (31}

where 7 corresponds to the nondimensional skin fric-
tion defined by © = dig/dy. It is relevant to pay atten-
tion that the expansion proposed for the temperature
includes terms of order 6. It is required because in
this linear theory the thermal expansion process pro-
duces significant changes in the temperature profile
only within this order. Otherwise, terms of order 8,
in particular for the temperature profile retains only
the well-known Lighthill’s solution for the Nusselt
number. Therefore, the Iinear nondimensional
governing equations are then transformed to:

se Ty =0 (32)

with the boundary conditions:

F=0: fp=10,=0, To=HE, T, =0

x>~ h,—0

Voo - Ay +J T(,(f,f) dy

0

70, T, >0

F. MENDEZ e dl.

X— 0 #y,—0

f(; -0

T,—-0

and

T
The first step is to obtain the solution up to term of
order 0. In this case, the energy equation decouples
from the continuity and momentum equations. There-
after, we proceed to include the correction to the
Lighthill solution for the Nusselt number within
the formalism of Triple-Deck theory. Therefore, from
equation (34) we can obtain a self-similar solution for
T, after some manipulations given by :

B i
I‘(l,&.%)« )

Tyee o oo D H(E 37

[} r(1/3) () 37
where T'(1/3, Pr 7°/9X) represents the incomplete
gamma function. The issue of T, serve us to complete
the momentum boundary layer problem which it is
now reduced to:

oo =10 38)
ox I3
Ciy dp,
P gy = - G (39)
Ox dx (8%

The boundary condition for i, as ¥ — oc is now given
by

. I At & P15 ) R E
iy — Ag(X)+ TABY P H(%) {40)
leaving the other boundary conditions unaltered. The
solution now can be obtained using the Fourier trans-
form with respect to ¥. Denoting the variables in the
Fourier space by subindex F, we obtain the following

system of equations:

iwy ‘;“; = {”‘" @n
with the following boundary conditions:
F=0 up=0v.=0
Py = lw| A, (interaction condition) (42)
Foroo: up—>Ap+ 9HE(2-/3) L&) (43)

PrT(I73) 220

for any value of the wave number . Equation (41)
represents the well-known Airy equation for the first
derivative of u.. Specifically, for this case the solution
is given by

Oy

- = B(w)A4;[(iw) "y}

¢y

(44)

where A4, is Airy’s function and B{(w) can be found
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through the use of the boundary conditions (42) and
(43), giving

IKT(E/3)w "

m ifw>0
Bw)=1 " _3krapoe
21(A41 13w433 ifo<0 (45)
with A = [—34%(0)]"* = 0.8272and K = 9"°T'(2/3)/

Pr'3T°(1/3). Using the Fourier inversion theorem, we
obtain the pressure distribution, skin friction and dis-
placement thickness which are gtven by :

5E) = %M(“/M”j{ [ [(1+ /35" cos (As%)

2n .9""3(]+\/§s4"3+58"3)
(V/3+5%%) sin (As%)] }
- — ds;  (46)
Sl,’3(1+\/3s4,3+s&'3)
_ 3KI(4/3)6,
T T 247 7(0)

. JL Lsm cos (A;g:f)+(\/§+2s4”3) sin (Asx)] ds
(1 +\/§s“"3+s""3)
(47)
I'(4/3)

A(X) = —0,K{ X" H(x) — AT

V3,

P

) sin (As¥) —s*3 cos (Asi):I d

1+\/§_g4f'3+s8,r3

(48)

where all the equations are valid for positive and
negative values of x and the variable s is related to
w through s = w/A. Clearly, the different forms of
solutions for ¥ < 0 and X > 0 correspond to closing
the contour of integration in Im @ > 0 and Im w < 0,
respectively. The asymptotic behavior for the main
variables for ¥ —» + oo, obtained from equations (46),
(47) and (48), are

r4/;3) |1 }

/T()E)«a—KOW{ +(£X)PHE) + -

TAY? (£3)
X—too (49)
(3) KO 7+, ifEo
ﬁ(i)~{2(3)”l}<0w/(~x)z'3 P fE =50
0, KT (4/3) 4,(0)/
3T RBAD + -+ %> o0
=1~ _20, KI'(4/3)4,(0)/
3PP —AR) 4+, > —o0
(51)

these asymptotic relationships agree with that
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obtained with the Blasius solution as x —» — o0 and to
the modified solution as ¥ — o0, as shown by equa-
tions (22). In both limits the pressure reaches
asymptotically the free stream value. The non-
dimensional skin friction tends also to unity in both
limits, which in this case are exactly the same because
of the introduction of the Howarth—-Dorodnitzyn
transformation. On the other hand for |%| - 0, the
asymptotic solution for the nondimensional pressure
and the displacement thickness are given by

H(E) ~ 3.12336— +O(FY?)

Ko, 1"(4/3)A2 :
2n

K0,T(4/3)

) ~ —29348 5

+O(®)

while the skin friction jumps from 1 —0.3731 6,,/Pr'’*
at £ =0 10 14+0.6218 §,/Pr"* at £ = 07. The jump
of the skin friction at X = 0 and the jump in the pres-
sure gradient at the same position are a result of the
existence of the central region not resolved by the
Triple-Deck, the structure of which is not considered
in the present analysis. However, the singularity in
the displacement thickness gradient has been removed.
Using this linearized theory we can obtain a critical
temperature ratio for separation (t = 0), as

(0.). = 2.68025 Pr"?

or

(T). = 14+2.68025 Pr'* = 3391 for Pr=0.71

which is not very far from that obtained using the
nonlinear numerical calculation (7,). =~ 3, to be
shown in the next section. This critical temperature
ratio as expected increases with the Prandtl number
because the expansion effects are reduced as the
Prandtl number increases. In order to conclude this
section, we develop a solution for the thermal problem
which is required to modify the Lighthill solution for
the Nusselt number [14]. This complementary analysis
confirms the importance that the Triple-Deck struc-
ture introduces, through the thermal expansion which
provides a higher order correction of the heat trans-
fer. Therefore, in order to deduce the role of the ther-
mal expansion within the lower-deck, we need to
obtain the temperature correction of order 02, T, by
solving equation (35) and the corresponding bound-
ary conditions. Using the Lighthill approximation,
by introducing the following appropriate coordinate,

a =y Pr'’®, equations (32), (33) and (35) transform
to
Oty 113 000 ,
o e o (52)
o (710 01,
Prax " 53
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+ iy Pri?

where

. T(1/3,0%/9%)
"=y MO

leaving the restant boundary conditions unaltered.
The parabolic equations can be solved easily and the
results are given by

o = {r(zmpr‘ Bl FFZ"}" 53

L rap) {(9x>”A(x>u34(r)(9v) 2
Y= TarR3) 9577

where 6(X) is the Dirac delta function. Clearly, within
this approximation the velocity profiles #, and 7,
appear linear and quadratic functions of the co-
ordinate ¢, respectively. On the other hand, the dis-
placement thickness 4 (%) is provided by the solution
obtained with the Fourier transform, i.e. equation
(48). The specific form of the dependence of i, and &,
on ¢ arises from the fact that the thermal boundary
layer grows downstream of the momentum boundary
layer. Therefore, the equation for 7', after sub-
stituting #,, ¥, and T, in terms of o, is transformed

_ a3, s‘/9x)5(x)Pr' 3

r'(1/3)

{ T(1/)AF) H(f)} N pplis g -atos

“AremprenT R TumED T

921 T3 AF)  HE)
< H(x ){ [r(m)ﬁfrﬁ (9x)”+2>7~7f‘3]

_3ppd [_‘L“_/”
) r@/3)Pre?

(@x)‘ AR~ 3A(x)(9x)

(9)()2 3

)3

3x) a®
2 2]} (57

with the boundary conditions:

a=0: T,=0. T, =0
T, =0, T.=0. (58
In order to simplify the above equation, it should be
observed that §(X) terms are irrelevant for all range
of %, because it can be shown that for finite values of

x and also for values of ¥ tending to zero, those terms
are identically zero, due to the properties of the Dirac

[ die 4]

I<0: X o0

delta function and similarly to the asymptotic expan-
sions for the gamma incomplete function. Therefore,
the restant equation of T, can be solved if we assume
a solution T, =ce """ ¢(X)H(X). The resulting
ordinary differential equation for ¢(¥) is then given
as

do 126 9
T 2r(2/3)(9%)"

1/3
X{Am ,\A%(x‘)+2ru(2/7>) (9%) H(;)} 59)

N P i3
with the condition :

FERI T

T(1/3)

d=0 for T . {60}
The solution for T is then given as
" 9 ¢ ¢ N
T= — = S 475
T2 TQ3) (9F)

. ( } 2I‘<2"3) Nt
{A(x)—{— - 4 Y(}’.’S) ( *) H(\')} o
e L

(61)

Finally, the comparison between the modified Nusselt
number and the Lighthill solution, after some manipu-
lations, can be written as

_ s,
| - 7 .
Nu* = Nu/Nu, zr(2/3)
A®) 2 TQ23) TAR) dR]
{‘(9”;;5“- AR USTARNE = J ©5) }‘ )

(62)

where Nu, corresponds to the asymptotic solution
due to Lighthill [14] given by

3! 3’0 Pi iN XRI
Ny = i
T(1/3) (x—1)
with A(%) given by equation (48). The asymptotic
solution for the Nusselt number is given by

; (1/3) 1
N~ (‘ *aren) m) BE

for ¥—0 and the corresponding Nu ~ "’
X - o0,

when

NONLINEAR ANALYSIS

It is clear that for valuegs of T,, not close to one,
the complete solution of the problem defined by
equations (25)-(30) requires a relatively sophisti-
cated numerical analysis. Diverse numerical tech-
niques have been implemented and discussed in the
past in order to solve interaction problems within the
framework of the Triple-Deck structure. However,
for subsonic flow, the feedback mechanism due to the
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outer flow introduces the interaction law (31), which is
global in character. In this paper we use the numerical
scheme developed by Veldman and Dijkstra [7],
adapted for the present thermal expansion process.

The method used in order to solve equations {25)—
(30) can be resumed under the following general steps:
By using the linear solution given by equations (46)
and (48) for the pressure and dispilacement thick-
ness distributions, it is possible to produce initial
values of the profiles which can be used to solve sim-
ultaneously the Hilbert integral and the boundary
layer equations. The previous known values at any
station are incorporated after some iterations for each
station, input to the next station. The problem should
be completed with a global convergence criterion.
Here, the parameter chosen to implement this cri-
terion is fundamentally the displacement thickness
A(%) and it is imposed to be

'Anew '—Aoldl < IOM()

which gives about five figure accuracy for most pre-
dicted quantities. Therefore, comparing the new A{X)
with the A(¥) from the previous iteration determines
if the program has converged. If not, A(X) is replaced
according to the formula

A(E) = BAold + (] - IE;)Ancw

until the differences between succeeding A(X) iterates
is less than 107 %, It has been found by trial and error
that B = 0.85 will produce a convergent iteration
scheme. For B = 0.5, this global criterion does not
converge and strong oscillations mainly at the skin
friction and the heat flux are presented. The parabolic
equations (25)—(27), together with the corresponding
boundary conditions are numerically solved using the
implicit method due to Keller [18], which is widely
known in the literature as the Box Method. This
method has several very desirable features which make
it appropriate for the solution of all kind of parabolic
partial differential equations. The main features of
this method can be resumed as follows : second order
accuracy with arbitrary nonuniform ¥ and j spacing ;
allows very rapid X variations and also permits easy
programming of the solution of large numbers of
coupled equations. The solution by this method can
be obtained by the following four steps:

(1) Reduce the equations at the lower-deck to a
first-order system.

(2) Write difference equations using central differ-
ences.

(3) Linearize the resulting algebraic equations
through Newton’s method and write them in a matrix-
vector form,

{4) Solve the linear system by the block-tridiagonal-
eliminations method.

If we follow the above steps, previously having intro-
duced the change of variables @ = 8y/07, 7 = — dy/0%
into the governing equations (25)—(27), it is possible
to define new dependent variables U(X, 7), V(x, 7)
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and T, so that the transformed momentum and energy
equations can be written as

oy
3=V (63)
oa A
5=V (64)
oV 165 U g
W=tV Yy ©
oT
sz=T (66)
cy
oT 5
3P 0T OT Wy (67

Préy 0% 0%

The corresponding boundary conditions except the
interaction condition, are to be omitted for simplicity.

RESULTS AND DISCUSSION

Figures 2-5 show the linear solution for the Triple-
Deck equations, for the reduced nondimensional
pressure (f/0,(Pr/0.7D)"?), skin friction ((T—1)/
0.(Pr/0.71)'7%), displacement thickness (4/0,,(Pr/
0.71)""*) and the reduced Nusselt number (Nu*),
respectively. In Fig. 2 we can see how the pres-
sure first increases due to the expansion effects in
the lower-deck. This positive pressure gradient has a
big influence in regions close to the wall, where the
convective terms are rather small. The central region
causes a jump in the pressure gradient but not in the
pressure itself. For positive values of ¥, the pressure
decreases strongly reaching values lower than the
ambient pressure, increasing asymptotically to this
value for large positive values of %. Figure 3 shows
the reduced nondimensional skin friction or shear
stress at the wall. For negative values of %, the disfav-
orable pressure gradient produces a decreasing shear
stress at the wall. From the linear analysis, the critical
conditions for separation can be obtained 7 = 0, giv-
ing 0, = 2.391 for Pr=0.71. For positive values of
X, the shear stress jumps to positive values decreasing
asymptotically to that given by Blasius as ¥ — .
Figure 4 shows the displacement thickness evolution
obtained by the linearized theory. Figure 5 shows the
modified Nusselt number Nu* resulting from com-
parison with the asymptotic solution by Lighthill.
For Nu* =0 we recover Lighthill’s solution. We
show that this correction is also singular due to
the free interaction with the outer inviscid flow.
Strong corrections are obtained for small values
of %.

In relation to the numerical resulis of the nonlinear
governing Triple-Deck equations, all computations
for the present algorithm have been performed on an
1BM /4381 computer. The base calculations presented
here were chosen for a nonuniform grid which has the
numerical end point X = + 35 and the outer edge of
the lower-deck located at j = 8. Because the grid is
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nonuniform, the initial step sizes for both ¥ and 7
were AX = A7 = 0.05, and also the ratio of lengths of
any two adjacent intervals was taken as 1.04 and 1.02,
respectively. We have taken 57 grid points in the trans-
versal coordinate of the lower-deck, which is sufficient
for most laminar-flow calculations and for the longi-
tudinal streamwise coordinate we used 80 stations.
For a given set of calculations presented here we used
a Prandtl number of Pr=0.7] and the Chapman-
Rubesin parameter C = up = 1. Figure 6 shows the
pressure distribution for several values of the tempera-
ture parameter 7,,. Here, as the value of the wall tem-
perature T,, increases, the expansion process modi-
fies substantially the pressure distribution up to a value
of T, close to 3.0, where the increase in pressure
distribution which is disfavorable, causes a decrease
in skin friction too strong to yield values of skin fric-
tton identical to zero, indicating a separation of the
lower-deck. This evolution of the skin friction for the
corresponding values of T, given above is shown in
Fig. 7. For values of T, greater than 3.0 the skin
friction goes to zero and the present analysis is no
longer valid in order to study this new structure where

recirculation and reattachment zones appear. In a
similar way as was observed by the pressure distri-
bution, the skin friction reaches asymptotically the
Blasius and modified Blasius solution for values of ¥
far away from the origin. The displacement thickness
is shown in Fig. 8. Clearly, the displacement thickness
is practically zero for ¥ < 0 as predicted by the Blasius
solution. Otherwise, for values of X > 0 the function
A(%), interpreted as the velocity slip in the higher
order at the base of the main-deck, has a significant
contribution necessary to cause the pressure dis-
turbances. From the physical point of view, the

derivative of A(X) is the negative of the normal velo-

city to the plate at the lower edge of the upper-deck

and as is shown in Fig. 8, the vertical velocity is not
discontinuous at the point where the step temperature
takes place. Therefore, the maximum normal velocity
occurs immediately after the step change in the wall
temperature.

On the other hand, Fig. 9 shows the non-
dimensional heat flux, ¢ = 07/07, evaluated at the
wall, predicted by the strong thermal process for
different values of T,. It can be seen from this figure

~ 1.0 3 )
P 3 :
3 } — Ty = 1.2
3 o, w
0.8 ; o - —Iw =8
3 at ———Tw =24
3 P I” ,/k\ ----- Ty = 2.
0.5 : r = 0.71 P\ w ,
3 f AN
3 I :\\.
g ,'l/, y; H \\‘\‘
0.3 1 /,’,/ — ",‘ \\\\‘
Wy HRANAY
P RN\
=% R
—0.0 J B e are = T T e e bwn -
i
1
i
—-0.3 I rrrvrrrrrrrrrrrrrrrr fppprrr—r—— G o o e g
-5.0 -2.5 0.0 2.5 X 5.0

FiG, 6. Pressure distribution for different values of the wall temperature parameter, T, (numerical
calculations).
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that when the value of T, increases, the heat flux
increases notably and more specifically close to the
origin. Clearly, just at X = 0 the heat flux is singular
due to the singular boundary condition. Figures 10
and 11 show the effect of the nonlinear terms on the
pressure and the skin friction, respectively. The linear

analysis overestimates both the maximum pressure as
well as the minimum skin friction. The critical value
of 0,, obtained from the linear analysis is 2.391, for a
Prandtl number of 0.71, while the numerical pre-
diction for separation from the full nonlinear equa-
tions was very close to 2.
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CONCLUDING REMARKS

The thermal expansion process for a step change in
wall temperature was analysed with the formalism
of the Triple-Deck theory. The pressure gradient is
disfavorable up to the position of the temperature
change, steeply favorable immediately after this posi-
tion. In the last part, the pressure finally increases
asymptotically to the uniform pressure solution. The
skin friction, however, decreases from the Blasius
value arriving at a zero value if T, is close to 3.0, for
a Prandtl number Pr = 0.71, causing a separation,
where the present analysis is no longer valid. This is
because the appearance of a recirculation zone, for
values of T,, greater than this critical value. The pre-
sent analytical model should be modified to include
recirculation and reattachment zones. As the sep-
aration takes place, heated gas is convected upstream,
therefore a cooling process must be established in
order to maintain the temperature of the plate at
the same level, upstream to the point of temperature
change. If, however, an adiabatic boundary condition

is applied to this upstream portion of the plate, then
after separation takes place, the upstream portion
of the plate is heated, reducing the strength of the
singularity, until separation disappears. This phenom-
ena could lead eventually to an oscillatory behavior
in the boundary layer flow. More work is needed to
elucidate these type of interaction problems.

The linear theory predicts the critical value of the
temperature ratio T, within an error of 15% and then
can be used in any order of magnitude analysis.
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SEPARATION DE LA COUCHE LIMITE PAR UN SAUT DE TEMPERATURE
PARIETALE

Résumé—On analyse I'influence de la dilatation thermique dans la couche limite d’un écoulement gazeux,
en utilisant le formalisme de la théorie a trois niveaux. Le modéle physique considéré est la convection
forcée d’un gaz sur une plaque plane soumise 4 un changement échelon de la température pariétale qui a
lieu & une certaine distance du bord d’attaque. On considére le paramétre fondamental T, défini comme
le rapport de la température de la paroi a celle de I'écoulement. libre. Pour des valeurs de T, proche de
I'unité, les équations peuvent étre linéarisées et résolues a 1"aide de la méthode de la transformée de Fourier.
Néanmoins pour des valeurs éloignées de 'unité, un traitement numeérique est nécessaire. Par des méthods
de différence finie, les résultats numériques relatifs a la pression, le frottement pariétal et le nombre de
Nusselt sont présentés pour différentes valeurs de T,,. Enfin, pour une valeur critique de ce rapport de
température, la couche limite se sépare.

GRENZSCHICHTABLOSUI\.{GEN INFOLGE EINES SPRUNGS DER
OBERFLACHENTEMPERATUR

Zusammenfassung—In der vorliegenden Arbeit wird der EinfluB der thermischen Expansion bei der
Grenzschichtstromung eines Gases untersucht, wobei der Formalismus der “Triple-Deck’ Theorie Anwen-
dung findet. Das betrachtete physikalische Modell betrifft die erzwungene Konvektion einer Gasstrémung
entlang einer ebenen Platte, deren Oberfldchentemperatur sich in einer bestimmten Entfernung von der
Anstromkante sprunghaft dndert. Es gibt einen grundlegenden Parameter, T, der als Verhaltnis der
Temperaturen an der Wand und in der freien Strémung definiert ist. Fiir Werte von T, nahe bei 1 k6nnen
die grundlegenden Gleichungen linearisiert und mit Hilfe der Fourier- Transformationsmethode gelost
werden. Weicht der Wert dieses Parameters jedoch von [ ab, so ist eine numerische Losung der grund-
legenden Gleichungen erforderlich. Unter Verwendung von Finite-Differenzen-Verfahren werden fiir unter-
schiedliche Werte von T, folgende GréBen numerisch berechnet : Druck, Wandreibung, Verinderung der
Dicke sowie Nusselt-Zahl. Fiir einen kritischen Wert dieses Temperaturverhéltnisses 16st die Grenzschicht
schlieflich ab.

OTPbLIB INTOTPAHHUYHOI'O CJIOS 3A CYET CKAYKA TEMIIEPATYPBI [TIOBEPXHOCTH

AnpoTamag—TeopeTHYECKH aHAMN3NPYETCA BIHAHKE MPOLIECCA TEIIOBOTO PACHIMPEHHA HAa TeueHHE rasa
B norpaHuyHoM ciioe. Mccnenyemas ¢uamteckas MOIedb OCHOBaHA HAa BhIHYXICHHOW KOHBEKLHHM rasa,
00TEKAIOWIEro ILUIOCKYIO TUIACTHHY, KOTOpas AOABEPKEHA CKaYKOOOPa3HOMY W3MEHEHHIO TEMNEPATYpPh
MOBEPXHOCTH Ha HEKOTOPOM PAacCTONHUM OT NepenHeit kpoMkH. OcHoBHO#H napametp T, ompexaensercs
KaK OTHOLIEHHE TeMINepaTyphLI CTEHKH K TeMIepaType cBoboaHoro noroka. [Ipu snavennsx T, , 6iu3kux
K eIWHHUIE, ONpeleliflollie YPaBHEHHS MOTYT OBIThb JIMHEAPH30BAHBI H pellIeHbl ¢ MOMOLILIO METOaa
npeoGpa3zopanuil yphe, a MPH 3HAYCHHAX 3TOro MAapaMeTpa, 3aMETHO OTJIHYHBIX OT CIHHHMIIbI, HCIIOJNb-
3YIOTCA YHCHEHHbiE MeTONbI peuleHus. IIPHBOAATCS MONyYEeHHble KOHEYHO-PA3HOCTHLIM METOIOM YMC-
JICHHEIE Pe3yJIbTaThl I JaBJIcHHS, TPeHHs] HA NOBEPXHOCTH, TOJIIAHLI BLITeCHEHHs M 4yAcaa Hyccenbra
B CJIyMac pa3JiM4HbIX 3Ha4enmii T, . I[IpH KpATHYECKOM 3HaUCHHH OTHOLICHMA TEMIEPATYp IOrpaHHYHbINA
CJIOH OTpbIBAETCA.



